
 

Frog Feeder 

Overview 
This project was designed to 

automatically feed my son’s pet 

frogs while we was out of town for 

two weeks. 

The frogs need to be fed once 

every two days and no commercial 

frog feeder was available.  A fish 

feeder, purchased from PetCo, 

was considered as an “off the shelf 

solution”, but it didn’t work.  The 

fish feeder was however 

cannibalised for parts for this 

project. 

The project required software on 

an Arduino and some simple 

circuitry, soldered onto a 

protoboard.  Some mechanical 

construction was required, to 

mount the motor, sensors and 

electronics, but the whole project 

can be done with basic mechanical 

skills. 

How it Works 
An Arduino is used to feed the frogs once every two days.  The Arduino counts down the 

necessary number of seconds for two days (configurable in the software).  Once this time has 

passed an output pin on the Arduino drives a motor, which rotates a hopper to dump food into 

the frog tank. 

A sensor, monitoring the food hopper, detects when the hopper has dumped the food and the 

Arduino turns off the motor.  The cycle repeats indefinitely. 



 

Circuit Design 
Schematic Diagram 

 

Motor Drive Circuit 
The motor and gearbox are an off the shelf, low voltage kit.  The motor requires a voltage 

around 3-5volts and has 

low current requirement.  

The motor is driven through 

a medium power transistor 

(TR1).  An opto-isolator 

(IC1) is used to interface 

between the Arduino and 

TR1.  The opto-isolator 

provides noise isolation 

and reduces the risks of 

causing damage to the 

Arduino, due to short-

circuits.  I/O line 12 on the 

Arduino is used to drive the 

motor control circuit. 

Position Sensor 
The small DC motor driving the hopper tends to start slowly when power is applied, it takes 

some time to get to speed, and also over-shoots when power is removed.  So the time for a 

complete revolution is not constant.  Additionally the food hopper tends to “slip” under load (a 

deliberate part of its design?) adding to the timing variability.  For these reasons the only way to 

know when food has been delivered is to monitor the food hopper and wait until it completes a 

full revolution. 



 

To monitor the food hopper a photo interrupter (IC2) detects a tab attached to the food hopper.  

The sensor is simply an IR emitter/receiver pair with an air gap between them.  Anything 

passing through the air gap 

causes the sensor output to 

transition high-to-low.  The 

output of IC2 connects between 

I/O pin 11 on the Arduino and 

the Arduino’s ground.  As with 

the motor drive circuit, this 

sensor is electrically isolated 

from the Arduino power supplies. 

 

 

 

 

 

 



 

Assembly 
The circuit was soldered onto the “Phenolic” prototyping board.  Jumper leads from the circuit 
connect to the Arduino board, via a 4 pin header providing connections to I/O pins 11, 12 and 
GND. 

 

Software Design 
A short program on the Arduino implements a state machine.  The state machine waits for 2 

days, starts the motor, monitors the sensor, stops the motor, then resets the timer to repeat the 

process 2 days later.  The program will loop forever.   

As with all Arduino programs there is a set-up function (setup()) and a function for the main-

loop (loop()).  The set-up function executes once, when the software first starts, the mainloop 

is called repeatedly while the Arduino is in the normal running state.  In addition to those two 

functions, there are declarations of a number of global variables, macros and some 

enumerations (custom data types). 

Declarations 
The first block of code is the declaration of variables and values needed for the application.  

This is done at the top of the file so the values can be used thoughout the application.  This 

avoids using hardcoded values in the code, for example for things like seconds in a day or the 

pin numbers of the outputs. 

 Lines 10-12:  Variables identifying the pins used for inputs and outputs 

 



 

 Lines 17-30:  Macros and defines used to control timing. 

FEED_INTERVAL - defines how long between feedings 

MAX_DELIVERY_DURATION – limit the maximum time the motor will ever remain on 

 

 Lines 35-50: Application variables and statemachine definition. 

next_feeding/feeding_timer – Control when the next feeding occurs and when it stops. 

FeedState/feed_state – enumerated type declaring the states of a statemachine used 

in the main loop to control the application. 

motorDetect/lastMotorDetect – Read the photo interrupter and detect the end of a 

revolution.   

Setup 

The setup() function sets the modes of the input and output pins, and initializes the outputs.  

The setup function initializes the application statemachine and sets an intial feeding for 10 

seconds into the future. 

Main Loop 

The loop() function operates the state machine.  The state machine has three states: Waiting 

for Feeding; Delivering Food; and Finishing Feeding. 

In Waiting for Feeding the state machine checks the time against the next feeding time.  Once 

the next feeding time is reached this state turns on the motor to deliver the food, then transitions 

to the Delivering Food state. 

In Delivering Food the statemachine checks for the photo interrupter to generate a low to high 

transition, signalling the tab has passed though the interrupter.  Once the low-high tranisiton is 

detected the state machine transitions to Finishing Feeding. 

Additionally, in Delivering Food, the state machine checks whether the motor has been running 

for more than MAX_DELIVERY_DURATION seconds.  If that is the case the state machine 

transitions to Finishing Feeding. 

In Finishing Feeding the motor is stopped, the next feeding time is calculated (FEED_INTERVAL 

seconds after the last feeding time) and the state machine transitions back to Waiting for 

Feeding. 

The state machine is implemented simply as a switch statement, with three cases. 

Also in the loop() function the LED on the Arduino board is made to flash briefly once per 

second, to show that the application is still running normally. 



 

TODO 

Enhancements 
The performance of the food hopper is, to say the least, disappointing.  So, one alterations I am 

considering is to hopper with a Screw Conveyor.  The food hopper is unnecessarily complex 

and unreliable.  A screw conveyor should be a more accurate, less error prone and cheaper 

solution ($5 rather than the $20 I paid for the fish feeder). 

Mechanical Design 
As the pictures show, the mechanical design of the project are very much a prototype.  Once 

the design is adapted to use the screw conveyor a better housing can be made, housing the 

electronics and more suitable for deploying on a variety of different tank sizes. 

Links 
http://sagar.org/workbench/frogfeeder 

 Website for this project, with source code and project document 

http://www.arduino.cc/  

http://www.nteinc.com/specs/3000to3099/pdf/nte3040.pdf  

http://www.nteinc.com/specs/3100to3199/pdf/nte3100.pdf  

http://www.nteinc.com/specs/200to299/pdf/nte210.pdf  

http://www.jameco.com 

http://en.wikipedia.org/wiki/Screw_conveyor  

 

http://sagar.org/workbench/frogfeeder
http://www.arduino.cc/
http://www.nteinc.com/specs/3000to3099/pdf/nte3040.pdf
http://www.nteinc.com/specs/3100to3199/pdf/nte3100.pdf
http://www.nteinc.com/specs/200to299/pdf/nte210.pdf
http://www.jameco.com/
http://en.wikipedia.org/wiki/Screw_conveyor


 

Table of Components 

Component Value Notes Supplier 

IC1 NTE3040 Optoisolator Fry’s 

IC2 NTE3100 Photo Interrupter Fry’s 

TR1 NTE211 PNP General Purpose, 
Medium Power Transistor 

Fry’s 

R1 1k0 Current Limiting Fry’s 

R2 470R Current Limiting Fry’s 

R3 1k0 Current Limiting Fry’s 

Protoboard  GCElectronics 
“Experiementer’s Phenolic 
Proto Board” 
 

Jameco 

Motor & Gearbox Item 70103**660 Tamiya Universal 
Gearbox 

Fry’s 

Arduino Arduino “Deicimila”   

 

 
 


